Package index
-
mydata
- Example data for openair
-
importADMS()
- CERC Atmospheric Dispersion Modelling System (ADMS) data import function(s) for openair
-
importEurope()
- Import air quality data from European database
-
importKCL()
- Import data from King's College London networks
-
importMeta()
- Import monitoring site meta data for UK and European networks
-
importTraj()
- Import pre-calculated HYSPLIT 96-hour back trajectories
-
importAURN()
importAQE()
importSAQN()
importWAQN()
importNI()
importLocal()
- Import data from individual UK Air Pollution Networks
-
importUKAQ()
- Import data from the UK Air Pollution Networks
Polar Analysis
Examine the relationship between wind speed, wind direction and pollutant concentrations.
-
percentileRose()
- Function to plot percentiles by wind direction
-
polarAnnulus()
- Bivariate polarAnnulus plot
-
polarCluster()
- K-means clustering of bivariate polar plots
-
polarDiff()
- Polar plots considering changes in concentrations between two time periods
-
polarFreq()
- Function to plot wind speed/direction frequencies and other statistics
-
polarPlot()
- Function for plotting bivariate polar plots with smoothing.
-
pollutionRose()
- Pollution rose variation of the traditional wind rose plot
-
windRose()
- Traditional wind rose plot
-
importTraj()
- Import pre-calculated HYSPLIT 96-hour back trajectories
-
trajCluster()
- Calculate clusters for back trajectories
-
trajLevel()
- Trajectory level plots with conditioning
-
trajPlot()
- Trajectory line plots with conditioning
-
TheilSen()
- Tests for trends using Theil-Sen estimates
-
calendarPlot()
- Plot time series values in a conventional calendar format
-
runRegression()
- Rolling regression for pollutant source characterisation.
-
smoothTrend()
- Calculate nonparametric smooth trends
-
timePlot()
- Plot time series
-
timeProp()
- Time series plot with categories shown as a stacked bar chart
-
timeVariation()
- Diurnal, day of the week and monthly variation
-
trendLevel()
- Plot heat map trends
-
TaylorDiagram()
- Taylor Diagram for model evaluation with conditioning
-
conditionalEval()
- Conditional quantile estimates with additional variables for model evaluation
-
conditionalQuantile()
- Conditional quantile estimates for model evaluation
-
modStats()
- Calculate common model evaluation statistics
-
summaryPlot()
- Function to rapidly provide an overview of air quality data
-
runRegression()
- Rolling regression for pollutant source characterisation.
-
scatterPlot()
- Flexible scatter plots
-
corPlot()
- Correlation matrices with conditioning
-
linearRelation()
- Linear relations between pollutants
-
calcFno2()
- Estimate NO2/NOX emission ratios from monitoring data
-
openColours()
- Pre-defined openair colours and definition of user-defined colours
-
quickText()
- Automatic text formatting for openair
-
drawOpenKey()
- Scale key handling for openair
-
aqStats()
- Calculate summary statistics for air pollution data by year
-
binData()
- Bin data, calculate mean and bootstrap 95 % confidence interval in the mean
-
bootMeanDF()
- Bootsrap confidence intervals in the mean
-
calcPercentile()
- Calculate percentile values from a time series
-
cutData()
- Function to split data in different ways for conditioning
-
rollingMean()
- Calculate rollingMean values
-
selectByDate()
- Subset a data frame based on date
-
selectRunning()
- Function to extract run lengths greater than a threshold
-
splitByDate()
- Divide up a data frame by time
-
timeAverage()
- Function to calculate time averages for data frames